
www.elsevier.com/locate/ytaap

Toxicology and Applied Pharmacology 198 (2004) 132–151
Review

Cholinergic systems in brain development and disruption by

neurotoxicants: nicotine, environmental tobacco smoke, organophosphates

Theodore A. Slotkin*

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
Received 28 April 2003; accepted 9 June 2003

Available online 16 March 2004
Abstract

Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental

toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or

intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from

maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide,

chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation,

synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular

events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for

chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites

and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain

maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected

mechanisms and targets for developmental neurotoxicants.
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Beginning in the 1960s, Buznikov et al. (1964, 1970) system (Lauder, 1985; Whitaker-Azmitia, 1991). In essence,
made the seminal finding that neurotransmitters are present in

high concentrations during specific phases of early develop-

ment of lower organisms, such as sea urchin embryos, and

during that period, are unrelated to their function in synaptic

signaling. In fact, these small molecules serve instead as

morphogens, controlling and coordinating the proper assem-

bly of the embryo, through receptor mechanisms and cell

signaling cascades similar to those through which these

neurotransmitters act in the mammalian brain (Buznikov,

1990; Buznikov and Rakic, 2000; Buznikov et al., 1996,

2001a). Spurred by these findings, other investigators then

identified similar trophic roles for neurotransmitters in the

cellular and architectural development of the central nervous
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within the appropriate developmental context, activation of a

given set of neurotransmitter receptors may: (1) promote

neural cell replication, (2) initiate the switch from replication

to differentiation, (3) enhance or retard axonogenesis or

synaptogenesis, (4) evoke or prevent apoptosis, or (5) enable

the appropriate migration and localization of specific cell

populations within each brain region. At the same time, these

multiple developmental roles of neurotransmitters render the

developing brain vulnerable to neuroactive chemicals that

elicit or block neurotransmitter responses, with sensitivity

extending through all phases of brain assembly, from the

early embryonic stage through adolescence (Yanai, 1984).

The present review will focus on agents that act through

disruption of trophic signaling elicited by one particular

neurotransmitter, acetylcholine. This emphasis is particularly

appropriate for several reasons. First, prenatal nicotine expo-

sure, in the form of maternal cigarette smoking or exposure to

environmental tobacco smoke (ETS), is one of the major

health problems ofmodern society. Second, organophosphate

insecticides, which are among the most widely used pesti-
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cides in the world, work by inhibiting acetylcholinesterase

and thus promoting and prolonging the actions of acetylcho-

line. Third, the potent warfare nerve gases that are likely to be

used in terrorist attacks, sarin, tabun, soman, and VX, are all

organophosphates. A focus on cholinergic mechanisms is

also appropriate given the critical roles played by acetylcho-

line in virtually all phases of brain maturation. As recently

reviewed (Lauder and Schambra, 1999; Weiss et al., 1998),

acetylcholine influences development as early as gastrula-

tion, and initially promotes cell division, at a stage in which

acetylcholine formation is ‘‘pre-neural.’’ Indeed, nicotinic

acetylcholine receptors (nAChRs), which will be the focus of

our discussion of adverse effects of nicotine on development,

actually become detectable before neurulation (Atluri et al.,

2001; Schneider et al., 2002), followed shortly thereafter by

the first definitive signs of the cholinergic neuronal pheno-

type (Lauder and Schambra, 1999). Later on, during terminal

neuronal differentiation, acetylcholine promotes the switch

from replication to differentiation (Slotkin, 1998a, 1999) and

subsequently modulates axonogenesis and synaptogenesis

(Audesirk and Cabell, 1999; Chan and Quik, 1993; Dahm

and Landmesser, 1991; Navarro et al., 1989a; Quik et al.,

1994). Dependent upon the developmental phase, acetylcho-

line promotes or prevents neuronal apoptosis: when cells are

poorly differentiated, the effect is primarily pro-apoptotic,

whereas in differentiated cells, it is anti-apoptotic (Berger et

al., 1998; Messi et al., 1997; Pugh and Margiotta, 2000; Roy

et al., 1998b; Slotkin et al., 1997a; Trauth et al., 1999b;

Yamashita and Nakamura, 1996). Accordingly, even relative-

ly late phases of brain development are dependent upon

trophic responses to acetylcholine, so that interference with

cholinergic signaling disrupts the final architectural assembly

of brain regions containing cholinergic target zones (Bach-

man et al., 1994; Hohmann and Berger-Sweeney, 1998;

Hohmann et al., 1988, 1991). Indeed, neuroproliferation,

apoptosis, and synaptic rearrangement continue into adoles-

cence (Bayer, 1983; Bayer et al., 1982; Huttenlocher, 1990),

especially the critical central cholinergic pathways that con-

trol learning, memory, and psychostimulant responses (Mat-

thews et al., 1974; Nadler et al., 1974; Zahalka et al., 1993a).

This review will thus summarize the current state of knowl-

edge of the effects of cholinergic disruptors on brain devel-

opment in stages ranging from early embryogenesis to the

adolescent. Finally, we will return to the originating infor-

mation about neurotransmitters and trophic factors in lower

organisms to explore the possibility that these may serve as

unique models for the screening of developmental neuro-

toxicants and for the elucidation of cellular mechanisms

operating in disruption of mammalian brain development.
Nicotine as an archetypal developmental neurotoxicant

In terms of the health impact on society, nicotine, in the

form of maternal smoking, likely represents the single most

important developmental neurotoxicant, involving as much
as one-fourth of all pregnancies in the United States (Bardy

et al., 1993; DiFranza and Lew, 1995); exposure via ETS

adds to that total. Tobacco contributes in a major way to

spontaneous abortions, intrauterine growth retardation and

perinatal deaths, Sudden Infant Death Syndrome, and, later

in life, higher rates of learning disabilities, behavioral prob-

lems, and attention deficit and hyperactivity disorder (Bell

and Lau, 1995; Butler and Goldstein, 1973; DiFranza and

Lew, 1995; Dunn and McBurney, 1977; Naeye, 1978, 1992;

Naeye and Peters, 1984). A recent series of papers identified

maternal smoking as a significant contributor to disruptive

and criminal behaviors in offspring, and to school and career

failure (Cornelius et al., 2001; Day et al., 2000; Lefkowitz,

1981; Orlebeke et al., 1999; Piquero et al., 2002; Rasanen et

al., 1999; Wakschlag et al., 2002; Weitzman et al., 2002). In

light of the role of acetylcholine as a critical factor in all

stages of mammalian brain development, and given the fact

that nicotine, a primary component of tobacco smoke, is a

specific stimulant of nAChRs and is thus an archetypal

cholinergic stimulant, it is immediately apparent that the

cholinergic–neurotrophic connection is likely to mediate

many of these effects. Essentially, by providing excessive

cholinergic stimulation throughout fetal life, nicotine from

maternal smoking can discoordinate the numerous events in

cell replication, differentiation, and synaptic development

that are necessary to the proper assembly of the mammalian

brain. The findings from human smokers, however, do not

obligate an underlying cholinergic mechanism, as cigarette

smoke contains thousands of bioactive compounds. Accord-

ingly, isolating the specific role of nicotine needs to be

accomplished with appropriate animal models.

The design of animal models of nicotine exposure is

less straightforward than one might think. When nicotine is

injected repeatedly into pregnant rats throughout gestation,

there are indeed behavioral as well as cellular and synaptic

abnormalities in the offspring (Martin and Becker, 1970,

1971; Nasrat et al., 1986; Slotkin et al., 1986b, 1987a,

1987b). However, to a large extent, these reflect the

consequences of repeated, acute episodes of uteroplacental

vasoconstriction and subsequent fetal hypoxia, associated

with high peak plasma levels of nicotine achieved by this

route of administration (Carlos et al., 1991; Jonsson and

Hallman, 1980; McFarland et al., 1991; Seidler and

Slotkin, 1990; Seidler et al., 1992; Slotkin et al., 1986a).

Beginning about 20 years ago, we and other researchers

developed an animal model of nicotine exposure using

osmotic minipump delivery of continuous, low-level infu-

sions, a technique that avoids the peak plasma levels and

resultant hypoxic episodes (Lichtensteiger et al., 1988;

Murrin et al., 1987; Navarro et al., 1988, 1989a, 1989b;

Slotkin, 1992; Slotkin et al., 1987b, 1987c). Accordingly,

this mode of nicotine administration delivers a fixed dose

of drug simulating the steady-state plasma levels seen in

smokers or users of transdermal nicotine patches (Lichten-

steiger et al., 1988; Murrin et al., 1987). Because the

pharmacokinetics are different in rodents as compared to
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humans, higher overall doses need to be delivered, but the

key element is the matching of plasma concentrations (not

total dose) in the rodent to those seen in typical smokers,

along with adjustment for the pharmacodynamic differ-

ences among species (Barnes and Eltherington, 1973;

Lichtensteiger et al., 1988). Thus, in rats, dose rates of

2–6 mg/kg/day are appropriate to reproduce the nicotine

plasma levels and CNS effects of nicotine found in

moderate (0.5–1 pack/day) to heavy (2 packs/day) smok-

ers (Lichtensteiger et al., 1988; Trauth et al., 2000b).

If nicotine disrupts brain development through cholin-

ergic mechanisms, then it would be expected that vulner-

ability should emerge at the stage at which nAChRs first

become detectable. In studies with cultured rat embryos,

we were able to show profound disruption of cell devel-

opment in the brain primordium at around the time of

neurulation (Roy et al., 1998b); the notable effects includ-

ed cytoplasmic vacuolation, enlargement of intercellular

spaces, and a sharp increase in apoptotic cells, without

general dysmorphogenesis in the rest of the embryo (Fig.

1A). Originally, these findings puzzled us, as the exposure

period involved a stage before that at which nAChRs were

thought to be expressed, based on ligand binding (Naeff et

al., 1992), although the localization of effects did follow

the pattern expected from the regions that express

nAChRs earliest. This problem has been resolved by

recent studies with electrophysiological techniques, which

indicate the presence of functional receptors in the early

neural tube stage (Atluri et al., 2001; Schneider et al.,

2002). What is truly surprising is that, despite the gross

dysmorphology in the brain primordium caused by nico-

tine exposure, substantial recovery occurs even when

nicotine administration continues through parturition, so

that brain structures are not grossly abnormal when

examined later on in adolescence or adulthood (Roy et

al., 2002). These differences are not reflective of variant

nicotine doses, as the concentrations used in the embryo

cultures (as low as 1 AM; Roy et al., 1998b) were quite

comparable to those achieved with maternal infusions (0.5

AM; Lichtensteiger et al., 1988), and the exposure period

for the culture system was shorter (48 h versus continuous

exposure throughout gestation). Quantitative morphology,

however, indicates that there are indeed long-lasting alter-

ations caused by gestational nicotine exposure (Fig. 1B).
Fig. 1. Effects of prenatal nicotine exposure on brain morphology during expos

contain the experimental details (Roy et al., 1998b, 2002). (A) Effects of nicotine

h period beginning at 9.5 days of gestation. On the left, neuroepithelium from a

phases of mitosis, and their processes. The mitotic figures (MF) are localized to the

cells and debris, in the form of intra- and extracellular bodies, often engulfed by

phagosome (P) contains multiple dark bodies. Scale bar = 20 Am. (B) Morpholog

PN30. Pregnant rats received continuous nicotine infusions throughout gestation.

exposed animal. Note the smaller cell size and increased packing density in the

superficial part (S) whereas late-born neurons are in the deep part (D) of the laye

photomicrograph of the hippocampus at PN30, showing segments sampled for the

limb of the dentate gyrus (DG). Scale bar = 300 Am. (C) Quantitative morphom

dentate gyrus (DG), CA3, and CA1, and in layer 5 of the somatosensory cortex (CX

errors. Note the decreases in parameters of cell size and the global increase in gl
In the hippocampal CA3 region and dentate gyrus, we

found a substantial decrease in cell size, with corre-

sponding decrements in cell layer thickness and incre-

ments in cell packing density (Fig. 1C). In layer 5 of the

somatosensory cortex, there was a reduction in the pro-

portion of medium-sized pyramidal neurons and an in-

crease in the proportion of smaller, nonpyramidal cells.

All regions showed elevated numbers of glia. Thus, at the

morphological level, prenatal nicotine exposure does

evoke long-term alterations in brain development but the

effects require quantitative analysis and are not qualita-

tively obvious.

Morphological examinations do not necessarily give an

indication of whether synaptic function is appropriately

controlled, so it is necessary to turn to neurochemical

examinations to further characterize the effects of nicotine

on brain development. Using the nicotine infusion para-

digm, we found definitive damage to the developing rat

brain at nicotine plasma levels comparable to those in

heavy smokers (Navarro et al., 1988, 1989b; Slotkin,

1992; Slotkin et al., 1987b, 1987c). Multiple biomarkers

of cell injury indicate that prenatal nicotine exposure

damages the developing brain (Fig. 2A). Throughout the

brain, ornithine decarboxylase activity is elevated during

the postnatal period, despite the discontinuation of expo-

sure at birth. Similarly, c-fos is constitutively induced for a

prolonged period, a situation known to evoke apoptosis

(Slotkin et al., 1997a; Trauth et al., 1999b). DNA content

declines by 10–20%; as each brain cell has a single

nucleus, decrements in DNA connote an equivalent short-

fall in the total number of brain cells. Over the ensuing 2

weeks after birth, deficits in total cell number actually

worsen, suggestive of an increase in programmed cell

death, which occurs naturally over this period, but which

ordinarily comprises a much smaller proportion of cells

(Slotkin, 1998a, 1999). Indeed, subsequently, we identified

constitutive activation of genes associated with apoptosis,

persisting into the period of maximal cell loss (Slotkin,

1998a; Slotkin et al., 1997a). What is particularly notable

is that nicotine-induced apoptosis in the developing brain

stands in direct contrast to its neuroprotective effect in the

mature brain (Janson et al., 1988; Kaneko et al., 1997;

Owman et al., 1989; Yamashita and Nakamura, 1996) so

that the developmental context in which nicotine exposure
ure and in adolescence. Results were excerpted from primary studies that

on brain development in cultured rat embryos. Exposure occurred for a 48-

control embryo, showing closely apposed pseudostratified cells at different

lumenal surface. On the right, a nicotine-exposed embryo, exhibiting dying

healthy cells, including those undergoing mitosis (M). A large nucleated

ical changes evident in the ectal limb of the hippocampal dentate gyrus on

The left panel shows a control tissue whereas the right is from a nicotine-

nicotine group. For both groups, the early-born large neurons are in the

r; compare cell sizes shown with arrows. Scale bar = 50 Am. Inset shows a

pyramidal cell layers of CA1 and CA3, and the granule cell layer of the ectal

etry of the dentate gyrus (left) and glial cell counts (right) in hippocampal

5), from the same study shown in B. Data are shown as means and standard

ial cells, characteristic of reactive gliosis consequent to cell damage.
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occurs is likely to be critical for evoking apoptosis. This

has since been confirmed with hippocampal progenitor

cells, which similarly show nicotine-induced apoptosis

only in early development (Berger et al., 1998).

As already described, acetylcholine, acting as a trophic

factor, can either promote mitosis in developing neurons, or
at later stages of development, can switch cells from mitosis

to differentiation. Examining a later developmental stage for

nicotine exposure, at the approach of parturition or in the

early neonatal period, we also identified a second mecha-

nism for cell deficits (McFarland et al., 1991): inhibition of

DNA synthesis, which compromises the ability of cells to



Fig. 2. Prenatal nicotine exposure elicits brain cell damage and loss, and impairs the development of synaptic activity in multiple neurotransmitter pathways.

Data were taken from a series of papers that contain the experimental details (McFarland et al., 1991; Navarro et al., 1988; Slotkin, 1998a; Slotkin et al., 1997a;

Trauth et al., 1999b; Zahalka et al., 1992). All values are presented as means and standard errors. (A) Cell damage markers in forebrain of rats exposed to

nicotine via maternal infusions throughout gestation. Constitutive elevations of ornithine decarboxylase (ODC) and c-fos are characteristic of cell injury and

apoptosis. Loss of DNA connotes a parallel decline in the number of cells. (B) Acute decline of DNA synthesis in brain regions of rats given a single dose of

nicotine on gestational day (GD) 18, postnatal day (PN) 3, or PN10. Note the regional hierarchy paralleling cholinergic innervation and nAChRs. (C) Prenatal

nicotine exposure impairs development of presynaptic cholinergic activity, as delineated with hemicholinium-3 binding to the high-affinity choline transporter.

Animals were exposed to nicotine via maternal infusions throughout gestation. Note the biphasic effect: initial deficits are corrected for a brief period, only to

reappear later in development. (D) Prenatal nicotine exposure impairs development of presynaptic noradrenergic activity, as delineated with norepinephrine

levels and utilization rate (turnover). Animals were exposed to nicotine via maternal infusions throughout gestation. Again, note the biphasic effect.
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divide. In this phase, even a single administration of

nicotine elicits a profound decline in DNA synthesis that

lasts for several hours, with specific targeting of brain

regions expressing high concentrations of nAChRs (Fig.

2B). The same effects can be elicited when minute amounts

of nicotine are introduced directly into the brain, bypassing

any systemic effects (McFarland et al., 1991).

Although clearly an adverse effect, deficits in the number

cells do not necessarily connote that behavioral performance

will be impaired; it is necessary, in addition, to demonstrate

that synaptic function is compromised. Because nicotine

works through nAChRs, we first evaluated effects on cho-

linergic neurotransmission (Navarro et al., 1989a; Zahalka et

al., 1992). Indices of neuronal impulse activity indicate that
prenatal nicotine exposure impairs the ontogenetic rise of

synaptic activity and elicits persistent deficits that emerge in

adolescence (Fig. 2C). However, in light of the general

disruption of cellular development, it is not surprising that

the adverse effects of nicotine extend to other neurotransmit-

ters. Nicotinic receptors also play a prominent role in the

activity of monoaminergic systems, and we found that fetal

nicotine treatment had adverse effects on these synapses as

well, again with the effects reappearing well after termination

of nicotine exposure (Fig. 2D). For catecholamines (norepi-

nephrine and dopamine), synaptic hypoactivity is evident in

the immediate postnatal period and, although values normal-

ize by weaning, deficits reemerge with the onset of puberty

(Navarro et al., 1988), accompanied by behavioral anomalies
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(Levin and Slotkin, 1998; Lichtensteiger et al., 1988; Ribary

and Lichtensteiger, 1989). Even when basal activity is within

normal limits, the reactivity of these systems to acute nicotine

challenge is desensitized, so that responses that normally are

evoked by cholinergic stimulation are ineffective in the

animals exposed to prenatal nicotine (Seidler et al., 1992).

Similar findings have been obtained for serotonin pathways

(Xu et al., 2001). Thus, fetal exposure to nicotine has lasting,

adverse effects on synaptic performance, effects that may not

emerge fully until adolescence. Again, the findings from

animal models thus mimic the delayed appearance of learning

and behavioral anomalies in the offspring of women who

smoke, as already enumerated.

In addition to its profound effects on patterns of presyn-

aptic neuronal activity, prenatal nicotine exposure alters

postsynaptic receptor-mediated signaling mechanisms,

effects which are equally likely to elicit neurobehavioral

abnormalities. Most interestingly, these actions are exerted

at cell signaling proteins downstream from the neurotrans-

mitter receptors themselves, thus eliciting heterologous

changes in a wide variety of signals (Slotkin et al., 1990,

1992, 1999; Yanai et al., 2002). Superimposed on the effects

on signaling proteins, nicotine exposure leads to diminished

responses of signals mediated by a variety of specific

receptors (Navarro et al., 1990a; Zahalka et al., 1993b), likely

involving changes in the expression of receptor proteins

(Navarro et al., 1990a, 1990b; Slotkin et al., 1987b, 1990;

Zahalka et al., 1993b). Developmental disruption by nicotine

thus occurs at numerous loci, ranging from outright cell loss

to specific alterations of neural activity, to misprogramming

of receptor signaling mechanisms.

If all these effects represent the sequelae of inappropriate,

mis-timed stimulation of nAChRs controlling neural cell

development, then one corollary is that they should be elicited

at nicotine exposure levels below the threshold for general

fetal growth impairment. The reason this is so important is

that intrauterine growth retardation is a well-recognized,

major predictor of adverse perinatal outcome in offspring of

smokers (DiFranza and Lew, 1995). In animal models of

nicotine exposure, lowering the dose of nicotine in rats to the

point where growth impairment vanishes, and where plasma

levels match those of moderate smokers, still produces all the

signs of fetal brain damage that were seen at higher doses

(Levin and Slotkin, 1998; Navarro et al., 1989b; Seidler et al.,

1992; Slotkin, 1998a, 1999). This outcome thus differs

considerably from that seen with nonspecific fetal insult,

which typically spares brain development relative to somatic

growth (Bell et al., 1987; de Grauw et al., 1986; Dodge et al.,

1975). On the other hand, greater sensitivity of brain devel-

opment relative to growth is entirely commensurate with the

specific targeting of nAChRs, which respond to nicotine at

nanomolar concentrations (Cairns and Wonnacott, 1988;

Hagino and Lee, 1985; Martino-Barrows and Kellar, 1987;

Slotkin et al., 1987b). The receptors originate before the

neural tube stage (Atluri et al., 2001; Schneider et al., 2002)

and rise dramatically in late gestation and after birth (Cairns
and Wonnacott, 1988; Hagino and Lee, 1985; Larsson et al.,

1985; Lichtensteiger et al., 1987; Slotkin et al., 1987b). Even

at low doses of nicotine, insufficient to cause fetal growth

retardation, nAChRs are tonically stimulated by fetal nicotine

exposure as evidenced by receptor upregulation (Navarro et

al., 1989b; Slotkin et al., 1987b). The specific role of nAChRs

has been demonstrated for each component of fetal brain cell

damage and loss associated with nicotine exposure: inhibi-

tion of DNA synthesis (McFarland et al., 1991), stimulation

of damage markers (Smith et al., 1991), or promotion of

apoptosis (Berger et al., 1998; Roy et al., 1998a; Slotkin et al.,

1997a). Even for the later-emerging events, such as altered

patterns of synaptic activity, synaptic signaling, and behav-

ioral performance, the dose threshold lies far below that of

growth impairment (Cutler et al., 1996; Levin and Slotkin,

1998; Levin et al., 1993a, 1996; Navarro et al., 1989b; Ribary

and Lichtensteiger, 1989; Seidler et al., 1992).

If the biochemical and behavioral effects of prenatal

nicotine exposure largely reflect drug actions exerted on

nAChRs during critical phases of neural cell development,

then how can we explain alterations that are present even in

brain regions, like the cerebellum, that are relatively sparse in

these receptors (Slotkin et al., 1987b)? First, it is important to

note that even low levels of receptors may mediate important

trophic responses during development. In fact, the cerebellum

contains nAChRs that are localized on specific cell popula-

tions and that actually undergo peaks of expression during

development (Caruncho et al., 1997; Court et al., 1995; Del

Toro et al., 1997; Graham et al., 2002; Kawa, 2002;

Nakayama et al., 1997; Opanashuk et al., 2001). Second,

nAChRs are located not only at postsynaptic sites but also are

prominent at presynaptic terminals of other neurotransmitter

systems, including acetylcholine, catecholamines (norepi-

nephrine, dopamine), and excitatory amino acids. Because

all these transmitters themselves exert trophic actions on the

development of their target cells, nAChR-induced release of

these transmitters will similarly disrupt development medi-

ated by other transmitters and other circuits; as just one

example, nAChR stimulation evokes release of norepineph-

rine in the developing cerebellum (O’Leary and Leslie,

2003), and in turn, this biogenic amine is a critical factor

for cerebellar cell maturation (Podkletnova and Alho, 1998;

Sievers et al., 1981; Vernadakis and Gibson, 1974).

These findings leave little doubt that nicotine is a neuro-

teratogen. As postulated at the outset, the exquisite sensitivity

of the developing brain to nicotine is a reflection of the role of

acetylcholine as a trophic factor modulating the patterns of

brain cell replication and differentiation, synaptic outgrowth,

and architectural modeling, all specifically centering around

those effects mediated through the activation of nAChRs.

One critical implication of these findings is that nicotine

replacement therapy, one of the major tools for smoking

cessation, may not be appropriate during pregnancy, as the

levels of nicotine are likely to exceed the threshold for

alterations in fetal brain development (Slotkin, 1998b).

Several years ago, we postulated that the first trimester might
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represent a relatively safe period for nicotine replacement

therapy, as the information available at that time suggested

that nAChRs did not emerge until the end of that period

(Cairns and Wonnacott, 1988; Hagino and Lee, 1985; Lars-

son et al., 1985). However, more recent evidence indicates

clearly that these receptors are present even before neurula-

tion (Atluri et al., 2001; Schneider et al., 2002), at which

stage, excessive cholinergic stimulation leads to apoptosis

andmitotic abnormalities (Roy et al., 1998b). Accordingly, in

view of the neuroteratogenic effects of nicotine, the most

appropriate course for fetal safety would be total maternal

abstinence from smoking or nicotine replacement products.

One final issue is to identify how far along in develop-

ment the brain remains sensitive to disruption by nicotine

exposure. Brain development continues into adolescence,

specifically encompassing neuroproliferation, apoptosis, and

synaptic rearrangement (Bayer, 1983; Bayer et al., 1982;

Huttenlocher, 1990). More specifically, the maturation of

central cholinergic systems involved in learning, memory,

and psychostimulant responses, is consolidated during the

periadolescent period (Matthews et al., 1974; Nadler et al.,

1974; Zahalka et al., 1993a). Adolescence is also the period

in which most life-long smokers begin their habit. In recent

years, over 30% of U.S. high school students reported

smoking cigarettes, with about 3000 teenagers beginning

smoking each day (Centers for Disease Control and Preven-

tion, 1998, 2000; National Institute on Drug Abuse, 1998).

Three-quarters of these become daily smokers by the age of

20 (National Institute on Drug Abuse, 1998; Nelson et al.,

1995), comprising a cohort for whom smoking will be a

long-term addiction (Pierce and Gilpin, 1996) with high

daily consumption and a low probability of quitting (Chen

and Millar, 1998). Accordingly, the number of deaths attrib-

utable to tobacco is expected to more than double worldwide

by 2020 (Murray and Lopez, 1997). Recent studies suggest

that adolescents are more susceptible than adults to the

development of nicotine dependence, often showing signs

of loss of autonomy over tobacco consumption and with-

drawal symptoms after short-term, episodic cigarette con-

sumption (DiFranza et al., 2000, 2002a, 2002b).

In light of the magnitude of the problem of tobacco use in

adolescence, it is surprising that, up until a few years ago,

little or no basic research had been done to characterize the

neurochemical and behavioral effects of nicotine in the

adolescent brain. We recently expanded our rat model of

nicotine exposure to encompass the adolescent, designing

regimens that produce plasma nicotine levels comparable to

those in regular smokers (25 ng/ml) (Slotkin, 2002) as well

as the lower levels seen in occasional smokers (Abreu-Villac�
a et al., 2003a, 2003b). As our findings were recently

presented in a comprehensive review (Slotkin, 2002), they

will be summarized only briefly here. Salient features of this

model include more profound and persistent upregulation of

nicotinic acetylcholine receptors (nAChRs) as compared to

adults, as well as prolonged suppression of cholinergic

activity and, upon nicotine withdrawal, long-term decre-
ments in neural activity and responsiveness (Abreu-Villac�a
et al., 2003a; Kelley and Middaugh, 1999; Slotkin, 2002;

Trauth et al., 2000a, 2000c, 2001; Xu et al., 2001, 2002). In

part, these differences reflect continuation of the pattern of

developmental neurotoxicity noted for fetal nicotine expo-

sure, albeit to a lesser extent than during the prenatal period

(Abreu-Villac�a et al., 2003b; Slotkin, 2002; Trauth et al.,

1999a, 2000b; Xu et al., 2002). As is true for the fetal

exposure model, the effects of adolescent nicotine are

accompanied by unique and persistent behavioral alterations

that are entirely distinguishable from those seen in adults

given nicotine (Levin, 1999; Trauth et al., 2000c). Specif-

ically, the lasting desensitization of cholinergic inputs to

monoaminergic systems (Trauth et al., 2001) likely contrib-

utes to long-term loss of psychostimulant reward responses

(Kelley and Middaugh, 1999) as well as persistent changes

in EEG and locomotor activity that have been characterized

as an uniquely adolescent ‘‘nicotine abstinence syndrome’’

(Slawecki and Ehlers, 2002). Equally notable, the effects of

adolescent nicotine in the rat model duplicate the sex

selectivity noted for many aspects of human adolescent

tobacco smoking. Female rats show greater degrees of

neural cell damage (Abreu-Villac�a et al., 2003b; Trauth et

al., 1999a, 2000b; Xu et al., in press), greater impairment of

synaptic activity of monoaminergic systems (Trauth et al.,

2001; Xu et al., 2001, 2002, in press), and greater behav-

ioral deficits (Trauth et al., 2000c). Recent studies indicate

that female adolescents show more rapid onset of nicotine

dependence, with loss of autonomy and signs of withdrawal

after only a few cigarettes (DiFranza et al., 2002a).

The findings in the adolescent have profound societal

implications. Smoking among adolescents is undergoing an

unprecedented increase, driven in measure by advertising

targeted toward this age group, subtly embedded in films,

music videos, youth-oriented magazines, and the Internet,

often containing powerful sexual content (Durant et al.,

1997; Ginzel, 1998; Hong and Cody, 2002; Sansores et al.,

2002). In addition, the medical community has largely failed

to recognize the magnitude of the problem or to provide

appropriate countermeasures (Thorndike et al., 1999). The

fact that nicotine in the adolescent brain, like the fetal brain,

elicits neurotoxicity and long-term alterations in synaptic

function means that there is likely to be a biological basis

for increased susceptibility to nicotine dependence and long-

term, adverse consequences during this late developmental

stage. In fact, as discussed in the next section, nicotine

levels as low as those experienced with typical ETS expo-

sure may be sufficient to cause significant changes both in

the fetal and adolescent brain.
Developmental neurotoxicity of environmental tobacco

smoke: is nicotine the culprit?

Compared to active maternal smoking, far less is known

about the consequences of prenatal ETS exposure, but



Fig. 3. Neurochemical effects of ETS exposure. Data were taken from

primary research papers, to which the reader is referred for experimental

details (Slotkin et al., 2000, 2001b, 2002a). (A) Upregulation of nAChRs in

cerebral cortex of Rhesus monkeys with episodic, perinatal exposure to

ETS. Values for Kd and Bmax are shown as means and standard errors. (B)

Alterations in cell signaling in cell membrane fractions prepared from the

brains of rats exposed to ETS prenatally only, postnatally only, or both

prenatally and postnatally. Data are shown as means and standard errors.

ETS exposure leads to induction of adenylyl cyclase, evidenced by an

increase in the direct enzymatic stimulant, forskolin. At the same time, the

specific response to h-adrenergic receptor stimulation is impaired, as

evidenced by the proportion of total adenylyl cyclase activity that responds

to the h-agonist, isoproterenol. In the heart, m2-acetylcholine receptors

(m2AChRs) undergo downregulation, but only in the groups exposed to

ETS postnatally.
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nearly all regulatory agencies and independent researchers

agree that the extant information indicates significant health

risks (Dunn and Zeise, 1997; Witschi et al., 1997). As might

be expected, adverse effects of ETS are most prominent for

respiratory disorders (Cook and Strachan, 1999; Irvine et al.,

1997; Witschi et al., 1997), but additional information

indicates that the effects extend to the cardiovascular system

and to behavioral outcomes (Eskenazi and Trupin, 1995;

Hutchison et al., 1998; Makin et al., 1991). There is a

continuum of tobacco effects on neurobehavioral develop-

ment, with ETS eliciting the same types of damage as active

smoking but with a smaller magnitude of effect (Makin et

al., 1991). Measurements of the levels of nicotine and its

metabolites are particularly instructive in delineating the

degree of exposure (Fried et al., 1995): these are readily

detectable in amniotic fluid (Jauniaux et al., 1999), meco-

nium (Ostrea et al., 1994) or hair (Eliopoulos et al., 1996) in

levels similar to those seen with light active maternal

smoking. Similarly, significant nicotine exposure occurs

with postnatal ETS, with young children actually accumu-

lating more nicotine than do older children at the same

degree of exposure (Fried et al., 1995; Kohler et al., 1999).

In terms of developmental liability, nicotine is one of the

key components of ETS, because, as described in the

preceding section, nicotine itself is a neuroteratogen with

adverse effects on brain cell number, synaptic development,

and neurobehavioral function (Levin and Slotkin, 1998;

Slotkin, 1998a, 1999). As just one example, one of the

key endpoints of nicotine-induced perinatal brain damage is

interference with central and peripheral autonomic mecha-

nisms that mediate the cardiorespiratory response to hypoxia

(Slotkin, 1998b, 1999; Slotkin et al., 1995, 1997b), mech-

anisms that are thought to underlie SIDS (Fewell and Smith,

1998; Franco et al., 2000; Hafstrom et al., 2000; Harper,

2000; Milerad et al., 1998; Nachmanoff et al., 1998; Sovik

et al., 1999; St.-John and Leiter, 1999; Storm et al., 1999;

Ueda et al., 1999); ETS exposure, like active maternal

smoking, increases the incidence of SIDS (Dybing and

Sanner, 1999; Klonoff-Cohen et al., 1995).

In the case of ETS, there are several key questions. First,

is there a specific role for nicotine, as opposed to the

ancillary neuroteratogenic effects of the myriad substances

present in ETS? Second, is there a critical period for effects

of ETS? This latter point is particularly important, given

potentially high environmental exposures of newborns both

in and outside the home (Cook and Strachan, 1999; Dwyer et

al., 1999; Kohler et al., 1999; Kulig et al., 1999; Scherer et

al., 1999; Tang et al., 1999). In lieu of testing the thousands

of compounds in ETS, many investigations from our and

other research groups have taken a comparative approach to

these questions, using animal models to contrast the effects

of ETS to those seen with comparable exposures to nicotine

alone. In a study with Rhesus macaque monkeys exposed to

ETS throughout pregnancy and into the early neonatal

period, we found substantial upregulation of nAChRs in

the cerebral cortex and the brainstem (Slotkin et al., 2002a)
(Fig. 3A). The magnitude of effect was entirely comparable

to that seen with prenatal administration of nicotine itself to

rodents (Hagino and Lee, 1985; Slotkin et al., 1987b) and to

that seen in the brain of active human smokers (Perry et al.,

1999). As already described, this degree of nAChR upregu-

lation represents sufficient nicotine-induced cell stimulation

to elicit damage to the developing brain, permanent changes

in behavioral performance, and alterations in the expression

of nAChRs that last into adulthood (Eriksson et al., 2000;

Levin and Slotkin, 1998; Slotkin, 1998a).
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These findings thus indicate that ETS exposes the devel-

oping brain to concentrations of nicotine that are likely to be

sufficient to elicit neuroteratogenic changes. Indeed, just as

noted for prenatal nicotine administration, ETS exposure of

developing rats results in a loss of brain cells (Gospe et al.,

1996) and alterations in synaptic communication (Slotkin et

al., 2001b). The latter effects are of particular interest in that

differentiating between actions on signaling proteins and

neurotransmitter receptors allows for separation of the

relative contributions of prenatal versus postnatal ETS

exposure. Prenatal nicotine exposure is characterized by

constitutive induction of adenylyl cyclase (AC), in associ-

ation with, or potentially in reaction to, corresponding

deficiencies in receptor inputs (Pennington et al., 1994;

Slotkin et al., 1990, 1992, 1999, 2000). Defective signaling

persists even when receptors normalize (Navarro et al.,

1990a; Slotkin et al., 1990), implying that the problems

originate in receptor coupling to response elements. It is

therefore of utmost importance that we identified exactly the

same pattern with ETS exposure (Slotkin et al., 2002a). In

the brain, the response to forskolin, which bypasses receptor

activation to stimulate AC directly, is upregulated regardless

of whether ETS exposure occurred prenatally, postnatally, or

in both periods (Fig. 3B). Additionally, the specific coupling

of stimulatory h-adrenergic receptors to AC is reduced by

ETS, as evidenced by a decrease in the proportion of AC

activity recruited in response to h-receptor stimulation.

Thus, ETS exposure recapitulates the same changes in AC

signaling seen previously with prenatal nicotine treatment

(Pennington et al., 1994; Slotkin et al., 1990, 1992, 1999),

but with a critical period extending into postnatal life.

There are also alterations in peripheral reactivity to

neural stimulation as a result of ETS exposure. Just as in

the brain, ETS evokes induction of AC in the heart in rodent

models (Slotkin et al., 2001b) and in the lung in nonhuman

primates (Slotkin et al., 2000). In addition, we identified a

decrease in cardiac m2-acetylcholine receptors that occurred

only with postnatal ETS exposure (Slotkin et al., 2001b)

(Fig. 3B). These effects are commensurate with the devel-

opment of cardiorespiratory abnormalities that are common

in children known to be exposed regularly to ETS (Cook

and Strachan, 1999; Eskenazi and Trupin, 1995; Hutchison

et al., 1998; Irvine et al., 1997; Makin et al., 1991; Pinkerton

and Joad, 2000; Witschi et al., 1997).

In sum, the current state of findings for perinatal ETS

exposure indicates that substantial nicotine reaches the

developing brain, sufficient to evoke changes in brain cell

development and synaptic signaling similar to those associ-

ated with prenatal nicotine exposure. Vulnerability clearly

extends beyond the prenatal period, as postnatal ETS

exposure, at levels mimicking passive smoking, elicits many

of the same changes with the same magnitude. Although

other tobacco smoke components undoubtedly contribute to

many of the effects of developmental ETS exposure, it

appears that the nicotine component contributes significant-

ly to adverse outcomes.
To date, there are no basic research studies that specif-

ically address the central nervous system effects of ETS

exposure in adolescence. However, in light of the continu-

ation of brain development into this period, we have

modeled the effects of nicotine down to the plasma levels

typically experienced with ETS exposure, one-tenth of those

seen in active smokers (Abreu-Villac�a et al., 2003a, 2003b).
Upregulation of nAChRs is again evident, along with

persistent decrements in indices of cholinergic synaptic

activity. These functional changes are also associated with

cell loss and damage to neuritic extensions, albeit to a lesser

extent than with comparable exposures in the fetus. Equally

important, the same effects are seen regardless of whether

nicotine exposure is continuous or intermittent, so that

repeated episodes of ETS exposure might be sufficient to

produce the same types of damage. The exquisite sensitivity

of the adolescent brain to nicotine neurotoxicity may thus

contribute to lasting neurobehavioral damage even with the

lower levels characteristic of ETS.
Developmental neurotoxicity of organophosphates: not

just cholinesterase inhibition

Based on nicotine’s effects on brain development, one

might expect the actions of organophosphate insecticides

to be quite similar. Typically, most organophosphates are

prototoxicants, requiring metabolic replacement of the P=S

bond with P=O, at which point the compounds act as

irreversible inhibitors of acetylcholinesterase, forming a

covalent linkage with the active site of the enzyme. As a

result, acetylcholine breakdown is impaired, resulting in

cholinergic hyperstimulation, which, when cholinesterase

inhibition exceeds 70–75%, elicits classical signs of ‘‘cho-

linergic storm,’’ salivation, lachrymation, urination, defe-

cation, and eventually, muscle fasciculation, convulsions,

and death. If these compounds are administered to devel-

oping organisms, then, the resultant cholinergic hyperstim-

ulation should reproduce the types of defects seen with

nicotine, a cholinergic agonist. As shall be shown below,

this is only partially correct, as it appears that the organo-

phosphates have additional effects on brain development

that may overshadow their cholinergic component. By far,

chlorpyrifos (CPF) has received the most attention in this

regard, and I will summarize studies with this particular

compound.

Despite recent regulatory decisions eliminating its use

inside the home (U.S. Environmental Protection Agency,

2002), CPF continues to be used worldwide and is respon-

sible for thousands of reported poisonings in the United

States annually (Clegg and van Gemert, 1999; Litovitz et

al., 1997); many more poisonings, particularly of small

children, go unreported because of the absence of overt

signs of toxicity (Litovitz et al., 1997). The major use of

CPF in agriculture and professional applications such as

termite control presents increasing problems of usage,
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storage, disposal, and unintended human exposure. In the

adult, unlike parathion, CPF evokes delayed neuropathies

only with very high exposures (Mileson et al., 1998;

Richardson et al., 1993). Nevertheless, there is growing

concern that CPF and other organophosphates may produce

neurobehavioral damage during development (Landrigan et

al., 1999; Pope, 1999; Slotkin, 1999). Indeed, before the

decision to ban its domestic use, estimates for pregnant

women and children indicated potential CPF exposures

above the No Observable Adverse Effect Level (Davis

and Ahmed, 1998; Fenske et al., 1990; Gurunathan et al.,

1998; U.S. Environmental Protection Agency, 2002), and a

recent study of meconium in newborn infants indicates fetal

exposure levels well above that threshold (Enrique et al.,

2002). Animal studies confirm that CPF has higher systemic

toxicity in neonates, with over an order of magnitude lower

LD50 values than in adults (Pope and Chakraborti, 1992;

Pope et al., 1991; Whitney et al., 1995). However, devel-

oping organisms recover more quickly from cholinesterase

inhibition than do comparably exposed adults, largely due to

the rapid synthesis of new cholinesterase molecules (Pope

and Chakraborti, 1992; Pope et al., 1991; Song et al., 1997).

This discrepancy means either that cholinesterase inhibition

is unrelated to developmental toxicity, or alternatively that

even a brief period of cholinesterase inhibition is sufficient

to disrupt development. As we shall see, both of these

explanations are true.

Parallel to our studies with nicotine (Roy et al., 1998b),

we have also carried out studies in rat embryo cultures with

CPF (Roy et al., 1998a). Using chlorpyrifos concentrations

that bracket the values found in fetal meconium (Enrique et

al., 2002), we found clear-cut mitotic abnormalities and

evidence of apoptosis in the developing brain after a 48-

h exposure at the neural tube stage of development; mitotic

figures were dispersed and disoriented and in addition,

cytotoxicity was evident from cytoplasmic vacuolation,

enlargement of intercellular spaces, and the presence of a

significant number of apoptotic figures (Fig. 4A). Signifi-

cant effects were found even at concentrations more than an

order of magnitude below those found in human fetal

meconium. There is a striking resemblance of these results

to the effects of nicotine in the same embryo culture model

(Roy et al., 1998b), a similarity that supports the idea of

augmented cholinergic activity underlies the adverse effect

of CPF. There is a difference, however, in that nicotine

stimulates nAChRs directly, whereas inhibition of cholines-

terase resulting from CPF would produce cholinergic stim-

ulation only where acetylcholine is being actively released.

Therein lies an interpretive problem. Choline acetyltransfer-

ase, the enzyme responsible for acetylcholine biosynthesis,

is not detectable in the developing brain until after the

neural tube stage (Lauder and Schambra, 1999). Either there

is cryptic, non-neuronal enzymatic activity, or else CPF is

acting through different mechanisms; some suggestions

include direct actions on nAChRs (Katz et al., 1997),

interference with nonenzymatic functions of acetylcholines-
terase that are involved in neural development (Brimijoin

and Koenigsberger, 1999), or effects on cell signaling

cascades that are critical for neural cell differentiation (Huff

et al., 1994; Olivier et al., 2001; Schuh et al., 2002; Song et

al., 1997; Ward and Mundy, 1996). Regardless of the

underlying mechanism, even a few days later, in late

gestation, there is little biochemical evidence of cell loss

or alterations in indices of cell size or neuritic outgrowth

(Qiao et al., 2002), a finding very similar to that of nicotine

exposure (Fig. 4B). Nevertheless, just as with nicotine,

deficits in brain cell numbers, neuritic projections, and

synaptic communication emerge in adolescence and contin-

ue into adulthood (Qiao et al., 2003a), so that the program-

ming of synaptic development has clearly been altered by

CPF exposure in this early gestational period. Comparable,

delayed changes are also evident when CPF exposure occurs

later in gestation. Again, there are initial morphological

changes (Lassiter et al., 2002; White et al., 2002) that either

resolve relatively quickly, or at least are difficult to detect

with biochemical indices of cell damage (Qiao et al., 2002),

only to reemerge later in development, accompanied by

behavioral anomalies (Garcia et al., 2002, 2003; Levin et al.,

2002; Qiao et al., 2003b). The defects are notable in the

same neurotransmitter pathways and regions that are char-

acteristic of nicotine-induced alterations, particularly involv-

ing cerebrocortical and hippocampal cholinergic projections

(Fig. 4C).

What is particularly important is that the later-appearing

deficits elicited after prenatal CPF are fully evident even at

exposures that lie below the threshold for detectable cho-

linesterase inhibition, and certainly below the 70–80%

inhibition required for systemic toxicity (Garcia et al.,

2002, 2003; Levin et al., 2002; Qiao et al., 2002, 2003b).

This reinforces the concept that other mechanisms might be

critical to the actions of CPF on the developing brain. This

supposition has been tested directly with in vivo models of

postnatal CPF exposure as well as in cell cultures. Again,

paralleling our studies with nicotine, when we administered

chlorpyrifos to 1-day-old rats, we observed acute inhibition

of DNA synthesis (Whitney et al., 1995), but there was no

regional selectivity to the effect (Fig. 4D): regions with low

cholinergic innervation and low nAChR concentrations

(cerebellum) were affected just as much as cholinergically

enriched regions (brainstem, forebrain), whereas nicotine

elicited the expected regional pattern. We obtained the same

inhibitory actions when minute amounts of CPF were

injected directly into the brain, bypassing hepatic activation

to CPF oxon, the metabolite that inhibits cholinesterase.

Regional selectivity emerged by the end of the first postnatal

week, corresponding to the phase of rapid cholinergic

synaptogenesis. Thus, CPF affects DNA synthesis by an

initial, noncholinergic effect, and only subsequently through

actions mediated by cholinergic hyperactivity. The biolog-

ical significance of noncholinergic mechanisms is evident

from subsequent studies demonstrating persistent inhibition

of DNA synthesis with repeated CPF administration (Dam



Fig. 4. Developmental neurotoxicity of CPF; experimental details for each panel are available in the original publications (Qiao et al., 2002, 2003a, 2003b; Roy

et al., 1998a; Whitney et al., 1995). Quantitative results are shown as means and standard errors. (A) Effects of CPF on brain development in cultured rat

embryos. Exposure occurred for a 48-h period beginning at 9.5 days of gestation. The left panel shows forebrain neuroepithelium in control embryos at

embryonic day 11.5, displaying a bipolar pseudostratified epithelium, apical and basal processes containing a granular nucleus and inactive heterochromatin

(n), as well as normal mitotic figures (m) located towards the internal limiting membrane. The right panel shows neuroepithelium from a chlorpyrifos-exposed

embryo, exhibiting extensive cell death (b) and extracellular bodies (arrowheads). A large cell (a) with multiple apoptotic condensations is also visible. Scale

bar = 20 Am. Over a much larger cohort (>40 embryos per treatment), there was no evidence of gross dysmorphogenesis nor changes in developmental

landmarks, aside from the disruption of cell development in the neuroepithelium. (B) After CPF exposure in vivo by maternal administration on GD9–12, there

is no biochemical evidence of cell loss in the fetal brain by GD17 or GD21, as evaluated by measurements of DNA. (C) Deficits in hemicholinium-3 binding to

the presynaptic choline transporter, a biomarker for cholinergic synaptic activity, emerge in adolescence (postnatal day 30) and adulthood (PN60), shown for

the hippocampus after CPF exposure on gestational days (GD) 9–12, and for the cerebral cortex and hippocampus after CPF exposure on GD17–20. (D)

Acute inhibition of DNA synthesis in brain regions of rats given a single dose of CPF at 1 or 8 days of age. Note the lack of a regional hierarchy on postnatal

day (PN) 1, whereas by 8 days of age, CPF does evoke regionally selective effects that parallel cholinergic innervation and nAChRs.

T.A. Slotkin / Toxicology and Applied Pharmacology 198 (2004) 132–151142



T.A. Slotkin / Toxicology and Applied Pharmacology 198 (2004) 132–151 143
et al., 1998), eventual deficits in the number of neural cells

(Campbell et al., 1997), suppression of gene expression and

macromolecular constituents involved in cell differentiation

(Dam et al., 2003; Johnson et al., 1998), and consequent

abnormalities of synaptic function and behavioral perfor-

mance (Dam et al., 2000; Levin et al., 2001; Slotkin et al.,

2001a, 2002b). Again, these effects are seen at CPF expo-

sure levels that are devoid of any overt toxicity and that

reduce cholinesterase activity by only 20% (Song et al.,

1997), a degree of inhibition insufficient to produce signs of

systemic toxicity.

Further characterization of developmental neurotoxicity

of CPF comprising mechanisms over and above those

related to cholinesterase inhibition has been provided by

several in vitro models. PC12 rat pheochromocytoma cells

are transformed neural precursor cells that, upon initiation of

differentiation with nerve growth factor, develop neuritic

projections and resemble neurons morphologically, physio-

logically, and biochemically, including increased expression

of cholinergic receptors, choline acetyltransferase and ace-

tylcholinesterase (Berse and Blusztajn, 1997; Greene and

Rukenstein, 1981; Greene and Tischler, 1976; Tischler and

Greene, 1975). Using undifferentiated PC12 cells, we were

able to reproduce the ability of CPF to inhibit DNA

synthesis by mechanisms unrelated to cholinergic activation

(Song et al., 1998). When PC12 cells were allowed to

differentiate, in the continuous presence of CPF, the inhibi-

tion of DNA synthesis intensified and persisted throughout

the period of cell development and consequently, acquisition

of new cells was severely curtailed, reproducing the effects

found for chlorpyrifos in vivo. Other laboratories have

found potent inhibition of neurite outgrowth, again unrelat-

ed to cholinesterase inhibition (Das and Barone, 1999; Li

and Casida, 1998), and we (Crumpton et al., 2000; Garcia et

al., 2001; Song et al., 1998) and others (Schuh et al., 2002)

identified specific, noncholinergic interference with nuclear

transcription factors that control cell differentiation. Al-

though the noncholinergic mechanisms participating in the

developmental neurotoxicity of CPF are just beginning to be

understood, there are many likely candidates, all concerning

signaling cascades that are common to multiple neuronal

and hormonal inputs. These include the AC-cyclic AMP-

protein kinase A cascade (Garcia et al., 2001; Huff et al.,

1994; Olivier et al., 2001; Schuh et al., 2002; Song et al.,

1997; Ward and Mundy, 1996; Yanai et al., 2002; Zhang et

al., 2002), receptor signaling operating through protein

kinase C (Bomser et al., 2002; Buznikov et al., 2001b;

Yanai et al., 2002), as well as direct actions on the

expression and function of nuclear transcription factors that

mediate the switch from cell replication to differentiation

and neuritic outgrowth, including c-fos, p53, AP-1, Sp1, and

CREB (Crumpton et al., 2000; Dam et al., 2003; Garcia et

al., 2001; Schuh et al., 2002).

What is critical about noncholinergic targets for CPF is

that they are all involved in signaling elements that represent

the convergent, final pathways for multiple receptor types;
these kinds of heterologous alterations might therefore

explain the widespread and delayed-onset nature of many

of the effects of developmental exposure to CPF. In any

case, the fact that these are unrelated to cholinesterase

inhibition is likely to have a significant impact on our view

of organophosphate-induced developmental neurotoxicity.

In the past, these compounds, along with other cholinester-

ase inhibitor insecticides such as carbamates, have been

grouped together because of their purported common mech-

anism of cholinesterase inhibition (Mileson et al., 1998).

Now that it is evident that there are other mechanisms for

disruption of brain development, the underlying assumption

of a common mechanism and summation of effects of

different compounds is no longer tenable. Unfortunately,

we may therefore have to consider each individual com-

pound as a separate entity.

The existence of multiple mechanisms underlying the

developmental neurotoxicity of CPF has additional implica-

tions for identification of critical windows of vulnerability. If

there are multiple mechanisms, then vulnerability is likely to

extend over a broad developmental period and to display

shifting cellular and regional targets, depending on phases of

brain development and the specific mechanism at each phase.

Indeed, neurobehavioral anomalies can be elicited by CPF

exposure even relatively late in brain development, during the

second and third postnatal weeks in the rat (Dam et al., 2000;

Levin et al., 2001; Moser, 2000; Moser and Padilla, 1998).

This period lies well outside of the major phase of neuro-

genesis in most brain regions but is within the peak period of

gliogenesis and synaptogenesis. It is therefore important to

note that we have found greater sensitivity of developing glia

to CPF as compared to neurons, studies that have been

conducted both with in vivo exposure models and with

cultures of gliotypic cells (Garcia et al., 2001, 2002; Qiao

et al., 2001). Glia provide nutritional, structural, and homeo-

static support that are essential to architectural modeling of

the brain (Aschner et al., 1999; Barone et al., 2000; Guerri

and Renau-Piqueras, 1997; Morita et al., 1999; Tacconi,

1998), and because glial development continues well into

the postnatal period, glial targeting implies a prolonged

vulnerability, extending into childhood. In keeping with this

interpretation, CPF administration in vivo inhibits DNA

synthesis and causes loss of brain cells during gliogenesis

(Campbell et al., 1997; Dam et al., 1998; Whitney et al.,

1995), with maximal effects on neural function appearing

during peaks of glial development (Campbell et al., 1997;

Dam et al., 1999; Monnet-Tschudi et al., 2000; Slotkin, 1999;

Song et al., 1997). In aggregating brain cell cultures, CPF

affects glial markers, again unrelated to cholinesterase inhi-

bition (Monnet-Tschudi et al., 2000).

Thus, although many aspects of the developmental

neurotoxicity of CPF resemble those of nicotine, and hence

appear to be consistent with the predicated role of acetyl-

choline as a trophic factor in nervous system maturation,

there are a host of other mechanisms that operate as well.

The consequences of CPF exposure represent a shifting
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target in terms of mechanisms, types of cells involved,

developmental processes that are compromised, and even-

tual behavioral outcomes. However, the main point is that

vulnerability to CPF involves periods as early as the neural

tube stage and as late as childhood or adolescence.
Fig. 5. Effects of CPF on morphogenesis in sea urchin embryos at the late

blastula 1 stage. The top panel shows a control embryo and the bottom

panel shows the effects of CPF. Note the abnormal pattern of cell

differentiation, resulting in pigmented cells forming a ‘‘mushroom-like’’

extralarval cap. CPF oxon, non-organophosphate cholinesterase inhibitors,

and the organochlorine insecticide, dieldrin, were all ineffective. Experi-

mental details can be obtained from the primary publication (Buznikov et

al., 2001b).
Where do we go from here?

The multiple and critical roles of acetylcholine as a

trophic factor controlling the development of the brain from

its primordial origins, through the final stages of plasticity

and the programming of synaptic activity, mean that drugs or

chemicals that target cholinergic neurotransmission repre-

sent a large and varied source of neurobehavioral anomalies.

In the cases of maternal or adolescent smoking, or organo-

phosphate insecticides, these exposures likely comprise a

major proportion of the human population. However, it is a

mistake to suppose that all compounds exhibiting choliner-

gic activity act only through that mechanism, and CPF

provides a major example where other processes need to

be taken into account. Establishing the underlying mecha-

nisms, and hence safety thresholds, for these compounds

must therefore represent a major focus of future work, but

therein lies a serious problem: the uncovering of unexpected,

alternative mechanisms that are particular to the immature

organism will require new screening methods that emphasize

unique attributes of developing systems. As shown here, and

reviewed elsewhere (Slotkin, in press), in vitro systems, such

as neural cell lines or embryo cultures, can play a key role in

elaborating these mechanisms. An additional possibility is to

return to the evolutionary origin of the role of neurotrans-

mitters in brain development, namely, their role as morph-

ogens in lower organisms. The best-studied case is the sea

urchin, where acetylcholine, norepinephrine, serotonin, and

other neurotransmitters are required for assembly of the

embryo (Buznikov, 1990; Buznikov and Rakic, 2000; Buz-

nikov et al., 1996, 2001a), using similar receptors and,

importantly, intracellular signaling cascades that are likely

to be the secondary targets of neurodevelopmental disrup-

tors. In a recent study, we used the sea urchin model to

demonstrate its ability to discriminate between the choliner-

gic and noncholinergic components of CPF-induced devel-

opmental alterations (Buznikov et al., 2001b), as these

organisms appear to represent potential biosensors for a

wider variety of toxicants (Buznikov, 1983; Buznikov et

al., 1997), including nicotine (Buznikov et al., in press). CPF,

but not CPF oxon, the active metabolite that inhibits cholin-

esterase, evokes profound structural abnormalities, appear-

ing only when the embryonic genome is turned on and the

maternal genome is turned off, as would be expected from

interference with gene transcription involved in cell differ-

entiation, precisely the proposed mechanism for adverse

effects on brain development. Unlike the elaborate proce-

dures required to detect abnormalities of synaptic function in

the mammalian brain, the morphological abnormalities in the
sea urchin embryo are readily visualized in the live organism

under light microscopy (Fig. 5), and of course, the sea urchin

produces thousands of virtually identical embryos, which

can be used for screening of developmental neurotoxicants.

There are similar prospects for nonmammalian, vertebrate

models, such as the zebrafish (Grunwald and Eisen, 2002;

Moens and Prince, 2002). Interfacing these newer models

with the standard Developmental Neurotoxicity Protocol

will represent a worthwhile challenge.

The findings reviewed here have many implications for

future work in developmental neurotoxicity. The first of

these concerns exposure scenarios. In the case of nicotine,

although we have a reasonable conception of the likely fetal

exposure levels from active maternal smoking, there are

remaining issues about levels achieved in the fetus, espe-

cially as nicotine pharmacokinetics change during pregnancy

(Dempsey et al., 2002). Additional issues are raised for

quantitation of ETS exposure, or for the actual fetal levels

achieved with the use of the transdermal nicotine patch or

other nicotine replacement therapies for smoking cessation
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(Slotkin, 1998a). In the case of organophosphates, whereas

nearly all investigations have concerned relatively high

exposures typical of insecticide application in the home or

agriculture, there is little or no information about the con-

sequences of long-term intake of the much lower levels

typical of food and water supplies; children consume much

higher amounts of food and water per unit body weight, so

that their exposures are considerably higher than those of

adults, factors that may contribute to childhood vulnerability

(Landrigan, 2001; Landrigan et al., 1999; May, 2000; Na-

tional Research Council, 1993; Physicians for Social Re-

sponsibility, 1995; Ray and Richards, 2001). Nor should we

overlook the potential exposures that may occur in a terrorist

incident, involving organophosphate nerve gases, such as

that carried out several years ago in the Tokyo subway: What

are the long-term consequences of fetal or childhood expo-

sures below the threshold at which toxic symptoms are

evident? Another new concept emerges from the fact that

the period of vulnerability of the developing brain to both

nicotine and CPF extends to the period of synaptic modeling,

continuing into childhood and adolescence. Although the

guidelines for the Developmental Neurotoxicology Protocol

have recently been extended to incorporate periods of brain

development corresponding to the early neonatal period, it is

evident that a complete picture of adverse effects may require

extension to much later phases (Slotkin, in press). There is

every reason to suspect that, unlike standard teratogens,

many more agents that target brain development will exert

adverse effects extending into adolescence. Finally, the

identification of specific cellular and synaptic mechanisms

underlying the actions of developmental neurotoxicants, and

the equally important task of specifying the pathways and

regions whose functions are ultimately compromised, hold

the promise of enabling the design of therapies that might

reverse or offset the adverse effects. To date, this has been

attempted successfully in at least two different models with

strategies of fetal cell transplants (Yanai and Pick, 1988) and

pharmacologic manipulations (Levin et al., 1993b). Future

work may thus reveal intervention strategies that allow us to

do something about developmental neurotoxicants other than

just identifying their ability to damage the developing brain.
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[3H]acetylcholine and [3H]nicotine binding in developing mouse brain.

Int. J. Dev. Neurosci. 3, 667–671.

Lassiter, T., White, L., Padilla, S., Barone, S., 2002. Gestational exposure

to chlorpyrifos: qualitative and quantitative neuropathological changes

in the fetal neocortex. Toxicology 66, 632.

Lauder, J.M., 1985. Roles for neurotransmitters in development: possible

interaction with drugs during the fetal and neonatal periods. In: Marois,

M. (Ed.), Prevention of Physical and Mental Congenital Defects. Alan

R. Liss, New York, pp. 375–380.

Lauder, J.M., Schambra, U.B., 1999. Morphogenetic roles of acetylcholine.

Environ. Health Perspect. 107 (Suppl. 1), 65–69.

Lefkowitz, M.M., 1981. Smoking during pregnancy: long-term effects on

the offspring. Dev. Psychol. 17, 192–194.

Levin, E.D., 1999. Persisting effects of chronic adolescent nicotine admin-

istration on radial-arm maze learning and response to nicotinic chal-

lenges. Neurotoxicol. Teratol. 21, 338.

Levin, E.D., Slotkin, T.A., 1998. Developmental neurotoxicity of nicotine.

In: Slikker, W., Chang, L.W. (Eds.), Handbook of Developmental Neu-

rotoxicology. Academic Press, San Diego, pp. 587–615.

Levin, E.D., Briggs, S.J., Christopher, N.C., Rose, J.E., 1993a. Prenatal

nicotine exposure and cognitive performance in rats. Neurotoxicol. Ter-

atol. 15, 251–260.

Levin, E.D., Christopher, N.C., Briggs, S.J., Rose, J.E., 1993b. Chronic

nicotine reverses working memory deficits caused by lesions of the

fimbria or medial basalocortical projection. Cogn. Brain Res. 1,

137–143.

Levin, E.D., Wilkerson, A., Jones, J.P., Christopher, N.C., Briggs, S.J.,

1996. Prenatal nicotine effects on memory in rats: pharmacological

and behavioral challenges. Dev. Brain Res. 97, 207–215.

Levin, E.D., Addy, N., Christopher, N.C., Seidler, F.J., Slotkin, T.A., 2001.

Persistent behavioral consequences of neonatal chlorpyrifos exposure in

rats. Dev. Brain Res. 130, 83–89.

Levin, E.D., Addy, N., Baruah, A., Elias, A., Christopher, N.C., Seidler,

F.J., Slotkin, T.A., 2002. Prenatal chlorpyrifos exposure in rats causes

persistent behavioral alterations. Neurotoxicol. Teratol. 24, 733–741.

Li, W.W., Casida, J.E., 1998. Organophosphorus neuropathy target esterase

inhibitors selectively block outgrowth of neurite-like and cell processes

in cultured cells. Toxicol. Lett. 98, 139–146.

Lichtensteiger, W., Schlumpf, M., Ribary, U., 1987. Modifications phar-
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